Redox Reactions of Hydrogen Selenide Ion

KERN L. NUTTALL and FRITZ S. ALLEN*

Department of Chemistry, University of New Mexico, Albuquerque, NM. 87131, U.S.A.

Received September 27, 1983

Hydrogen selenide ion (HSe-) is an important product in the metabolism of the essential trace element selenium. Although its role in selenium metabolism is recognized, aspects of the basic chemistry of selenide have been ignored, particularly the tendency of selenide to undergo rapid redox reactions with biological oxidants. Using polarography, we have found that selenide reacts in vitro *with a variety of compounds including dehydroascorbic acid, quinones like vitamin K1 and FAD (flavin adenine dinucleotide), and disulfides such as oxidized glutathione and lipoic acid. The fact selenide reacts readily in* vitro *suggests similar reactions may also occur* in vivo *with important biological consequences, Contrary to expectations,. selenide was found not to reduce the disulfide bond of oxidized dithiothreit-01 (trans4,5dihydroxy-1,2-dithiane), indicating the commonly published value for the standard electrode potential of the selenium/hydrogen selenide ion couple is in error. The electrode potential is an important parameter to aid in anticipating possible redox reactions of selenide in vivo.*

Introduction

An important product in the metabolism of the essential trace element selenium is hydrogen selenide $(H₂Se)$ [1]; in the physiological pH range, hydrogen selenide exists primarily as hydrogen selenide ion (HSe⁻⁻). Although the role of this ion in selenium metabolism is recognized, much of the basic chemistry remains uninvestigated, particularly the tendency of selenide to be rapidly oxidized by a variety of biologically relevant oxidants. Using the electrochemical technique of polarography, we have found selenide reacts rapidly with biological compounds like dehydroascorbic acid, quinones like

FAD (flavin adenine dinucleotide), and other oxidants. The neglect of selenide redox reactions is emphasized by the fact that the commonly published value for the standard electrode potential of the elemental selenium/hydrogen selenide ion couple is in error. The standard potential is a useful value for predicting the direction of thermodynamically possible redox reactions, and, as such, is an important parameter in anticipating potentially interesting biological reactions of selenide. On the basis that selenide is rapidly oxidized *in vitro, we* suggest it is logical to suspect selenide also undergoes unidentified redox reactions *in vivo.* Detection of such reactions may prove difficult given the low levels present in the body, but *in vitro* reactions are easily monitored using polarography, giving clues as to what reactions might occur in the body.

Experimental

Selenide solutions were prepared under nitrogen in anaerobic glassware by hydrolysis of aluminum selenide $(Al_2Se_3;$ purchased from Alfa Products) as suggested by Waitkins & Shutte [2]; hydrolysis gives volatile hydrogen selenide, which is subsequently trapped in 0.1 *M* phosphate buffer (pH 7) as hydrogen selenide ion. Preparation of mM concentrations requires only tens of mg aluminum selenide, largely reducing the hazards associated with hydrogen selenide generation [3]. An amperometric-style buret was used to deliver selenide directly to the polarographic cell without exposure to air. Selenide solutions treated in this manner are crystal-clear until exposed to an oxidant; on oxidation, selenide forms a colloidal suspension of red amorphous elemental selenium obvious on visual inspection.

Selenide has a well-defined polarographic wave [4], as do many of the other compounds tested in the present study. Compounds were monitored for reaction with selenide in oxygen-free 0.1 *M* phos-

^{*}Address correspondence to: Fritz Allen, Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A.

TABLE I. Hydrogen Selenide Ion Reactions with Selected TABLE I. Hydrogen Selemue fon Reactions w

Oxidant/(Reductant)	$E^{O'}$.	Reaction with HSe ⁻
1,4-benzoquinone	0.293	yes
methylene blue	0.011	yes
riboflavin	-0.208	yes
FAD/(FADH ₂)	-0.219	yes
GSSG/(GSH)	-0.23	yes
lipoic acid	-0.29	yes
DTT (oxidized) ^b	$-0.33^{\rm c}$	no
H'/H ₂	-0.421	no
methyl viologen	-0.44	no

 $a_{\overline{z}}$ under \overline{z} under noted. Because \overline{z} $(1, 1)$ role reading (24) unless otherwise noted. $(2, 1)$ bithiothreitor (oxidized) or trans-4,5-dihydroxy-1,2-dithiane.
[25].

phate buffer (pH 7) at 25 \degree C using a Sargent-Welch Model XVI polarograph equipped with a thermostatted H-type cell and saturated calomel electrode (SCE); the dropping mercury electrode (DME) had (σ L), the dropping mercury electrone (σ μ ϵ) ϵ a drop time of π , bo see and a mercury flow of 1,0 mg/sec , compounds were incroduced more poiar graphic cen at approximately with new concentration, oxygen removed by bubbling with nitrogen for 20 minutes, and the selenide then added.

Results

Several of the compounds monitored for reaction $\frac{1}{1}$ selection in Table I, along with the listed in Table I, along with the theory is also with the theory in Table I, along with the theory is also with the three in Table I, along with the three in $\frac{1}{1}$ select with science are nated in Table 1, along with the electrode potentials at pH 7. The electrode potential of selenide can be experimentally estimated by comor selement can be experimentally estimated by comparing its tendency to undergo redox reactions with compounds having established electrode potentials; Table I suggests the electrode potential for hydrogen selenide ion falls between that of lipoic acid and oxidized DTT (dithiothreitol). Individual reactions are discussed in more detail below.

Quinones

Quinones were found to oxidize selenide readily; Quinones were found to oxidize selentie readiric specific quinones rested were $\mathbf{r}_1 + \mathbf{v}$ enzoquinone, $\frac{1}{100}$ and $\frac{1}{100}$ (in $\frac{1}{100}$ and $\frac{1}{100}$ a \mathbf{r}_1 (in \mathbf{v}_ℓ chianon). These reactions have not been described in the literature, and the wide-
spread distribution of quinone compounds in the bord mathematical with selection with selection with selection with selection of potential control of the potential of the selection of t body makes the reaction with selement of potential biological interest. Biological interactions with another quinone, vitamin E, have been noted by Diplock *et al.* [5].

Dehydroascorbic Acid

The oxidized form of ascorbic acid, dehydroascorbic acid, is not stable at pH 7, but is stable in the pH range from 2 to 4 [6] ; dehydroascrobic acid is easily prepared by air oxidation of ascorbic acid as described in Tolbert & Ward [6], Selenide was found to react readily with dehydroascorbic acid in 0.1 M phosphate at pH 3, giving colloidal selenium; loss of volatile hydrogen selenide was minimal during the course of the reaction. B_{tot} is the reaction.

biological interactions between selement and ascorbate have been noted. Anderson $&$ Moxon [7] correlated the survival rate of dogs injected with correlated the survival rate of dogs injected with sourant scientic to the levels of ascorbate found in the blood. Hill $[8]$ showed that ascorbic acid supplementation of chicks reversed the growth loss associated with chronic selenium toxicity. The biochemical basis of these effects is unknown.

Aromatic Nitro and Nitroso Groups

 m ancho and Nuroso Groups is well known for m $\frac{1}{100}$ is well known to reduce the reduce to reduce the $\frac{1}{100}$ is well known to its ability to reduce aromatic nitro groups to amines [9]; it was anticipated that the closely related
hydrogen selenide ion would react in an analogous mydrogen seiemde fon would feact in an analogous m artius m and m and m dinitro- $1 + m$ martius yellow (2,4-dinitro-1-naphthol) and nitro-
furantoin [N-(5-nitro-2-furfuryllidene)-1-aminohyd into found the found to reach found to reach the reaction of the reaction of the reaction of the reaction o nyuantion₁, were both found to react with selemn Nitrofurantoin is a common urinary tract antiseptic whose toxicity has been shown to be more severe in selenium deficient chicks [lo] .

Selenide also demonstrated the ability to reduce the nitroso groups of N,N-dimethyl-4-nitrosoanaline and nitroso R salt (3-hydroxy-4-nitroso-2,7-naph- $\frac{d}{dx}$ introso is salt $\frac{d}{dx}$ in $\frac{d}{dx}$ many $\frac{d}{dx}$. Like $\frac{d}{dx}$ malene disuntific acid disourdin sail). Like many nitroso compounds, both these substances are presumed carcinogens.

Disulfides

 w_1 is a kilomatic reported the ability reported th woods of Klayman [11] mst reported the abilit of selenide to reduce a variety of disulfides, including cystine, in the following manner:

$$
HSe^{-} + RSSR + H^+ \longrightarrow Se^{o} + 2 RSH
$$
 (1)

 \mathbf{w} found selected also reduces of the selected of the s we found selembe also reques other disurfaces of biological interest, including oxidized glutathione and the cyclic disulfide lipoic acid. However, another cyclic disulfide, *trans*-4,5-dihydroxy-1,2-dithiane (oxidized dithiothreitol), is not reduced by selenide. α contains a colloidal of reduced by selection α . in fact, the reverse reaction occurs. a conordal reduced by DTT to give selection and the cyclic selection of the cyclic select discussed by DTT to give selement and the cyclic produce this multates the unection reaction to procedus is determined by the redux potential of the disulfide/thiol couple; when the reduction potential of the thiol is strong enough, reaction 1 proceeds
to the left. This fact suggests that the electrode

TABLE II. Comparison of Calculated Values for the Electrode Potential of the Selenium/Hydrogen Selenide Ion Couple.

Source	E° , V	E^o, V^a
NBS Circular 500 ^b	-0.51 ^c	-0.72
Corrected ^d	-0.48	-0.69
NBS Note 270-1 ^e	-0.23	-0.44
Corrected ^d	-0.20	-0.41
Present Estimate	-0.12 to -0.08	-0.33 to -0.29

^aElectrode potential at pH 7. ^bRossini *et al.*, [15]. Commonly listed value. dCorrected for the standard free energy of formation for amorphous elemental selenium [23]. e_{Wagnan} et al., $[16]$.

potential of the selenium/hydrogen selenide ion couple falls between that of lipoic acid and oxidized DTT. It should be noted that this estimate of the electrode potential is only as good as the values for the disulfide/thiol couples involved, and that determinations of these couples are subject to error [12]. Aside from the electrode potential, it is apparent that the use of DTT in selenium metabolism studies, as in Banerjee and Sani [13], should be approached with caution.

Discussion

Most standard potentials for selenium compounds are obtained indirectly from thermodynamic calculations [141. The standard source for thermodynamic data is the National Bureau of Standards (NBS) publication Circular 500 [15] and NBS Technical Note 270-1 [16]. The original source for the NBS data dates from 1887 [17]; problems with this data have been noted previously [18, 19]. The standard electrode potentials calculated using these two NBS sources are shown in Table II, along with the electrode potentials calculated for pH 7. The value of -0.51 V is that commonly found in tables of standard potentials [14, 20], and differs considerably from the value calculated from the present study. Calculations usually assume the formation of the most stable modification of elemental selenium, the gray hexagonal allotrope [21], but the modification which forms initially in aqueous solution at moderate temperatures is the less stable red amorphous allotrope [22] ; therefore, corrections for the standard free energy of formation of amorphous selenium at 298 K of 5.06 kJ/mol [23] have been included in Table II.

The electrode potential of the selenium/hydrogen selenide ion couple is an important parameter in predicting the possible redox reactions in which this couple can participate. The fact that the redox potential is less negative than commonly thought suggests, for example, that some biological thiols may be able to generate selenide from colloidal selenium under favorable conditions. Given the ease with which selenide undergoes a variety of redox reactions with a variety of biologically relevant oxidants *in vitro,* similar reactions should be considered *in viva*

Acknowledgements

This work was supported in part by grants from the Biomedical Research Committee and the Research Allocation Committee of the University of New Mexico, and by NIH Grant GM 27046.

References

- H. E. Ganther, *Adv. Nutr. Res., 2, 107* (1979).
- G. R. Waitkins and R. Schutt, Inorg. *Synth., 2, 183* (1946).
- I. Sax, 'Dangerous Properties of Industrial Materials', 1. Sax, Dangerous rropernes or muusinal materials, (1975). J. J. Lingane and L. W. Niedrach,J. *Am. Chem. Sot.,* 70,
- 4115 (1948). A. T. Diplock, H. Baum and J. A. Lucy, *Biochem. J.,*
- *123, 721* (1971). 123 , 721 (1971).
6 B. M. Tolbert and J. B. Ward, in 'Ascorbic Acid', (P. A.
- 7 H. D. Anderson and A. L. Moxon, J. *Pharmacol. Exper.* \mathbf{B} . M. Tolbert and J. D. Ward, in Ascolor Acid, (1. A. SCIU AIRE B. M. TOIDCIT, CUS.), pp. TOI-T
- *Therap.. 76, 343* (1942). Therap., 76, 343 (1942).
C. H. Hill, *J. Nutr.*, 109, 84 (1979).
- : H. H. Hodgson and E. R. Ward, .I. *Chem. Sot., 794*
- 10 F. J. Peterson, G. F. Combs, J. L. Holtzman and R. P. п. п. .
(1045).
- $\overline{11}$ F. J. Peterson, G. F. Comos, J. L.
Mason, *L. M. A. 112, 1741 (19*92). T. S. Woods and D. L. Klayman, *J. Org.* Chem., 39, 3716
- 12 W. M. Clark, 'Oxidation-Reduction Potentials of Organic (1074) .
- 13 C. K. Banerjee and B. P. Sani, *Biochem. Biophys. Res.* W. M. Claik, Oxidation-Reduction Folemials of Organic Systems', pp. $471-487$, Williams & Wilkins, Baltimore, (1960) .
- 14 S. I. Zhdanov, *Encycl. Electrochem.* Elem., 4, 361 C. K. Banerjee and B. P.
- 15 F. D. Rossini, D. D. Wagman, W. H. Evans, S. Levine (1975).
- 16 D. D. Wagman, W. H. Evans, I. Halow, V. B. Parker, and I. Jaffe, 'Selected Values of Chemical Thermodynamic Properties', pp. 46-48, 839-840, U.S. Govemment Printing Office, Washington, D.C. (1952).
- 17^{17} D. D. Wagnan, W. H. Evans, I. Halow, V. D. Laikel,
S. M. Bailey and B. H. Schumm. 'Sclooted Values of \mathcal{C} , \mathcal{C} , 56-57, U.S. Government Printing Office, Washington, 56-57, U.S. Government Printing Office, Washington, D.C. (1965). M. C..Fabre,Ann. *Chim. Phys.. IO, 472 (1887).*
- $\frac{17}{10}$
- A. J. McAmis and W. A. Felsing, *J. Am. Chem. Sot., 47,* 18 A. J. McAmis and W. A. Felsing, *J. Am. Chem. Soc.*, 47, 2633 (1925).
- 19 F. R. Bichowshy and F. D. Rossini, 'Thermochemistry of the Chemical Substances', pp. 30, 202-204, 280, Reinholt, New York (1936). 20 A. J. Bethune and N. A. S. Loud, 'Standard Aqueous
- Electrode Potentials', pp. l- 19, Hampel, Illinois (1964). (1704) .
21 W. M. J. Cation States of the Elements and
- W. M. Lattiner, Oxidation States of the Elements and
Their Detentials in Aqueous Solution', 2nd ed., pp. 81-84, Prentice Hall, New Jersey (1952).
- 22 W. C. Cooper and R. A. Westbury, in 'Selenium', (R. A. Zingaro and W. C. Cooper, eds.), pp. 87-147, Reinhold, New York (1974). 23 U. Gaur, H. Shu, A. Meista and B. Wunderlish, *J. Phys.*
- *Chem. Ref Data, IO, 89* (1981).
- 24 P. A. Loach, 'CRC Handbook of Biochemistry', (H. A. S_1 , S_2 , S_3 , S_4 , S_5 , S_6 , S_7 , S_7 , S_8 , S_9 Ohio (1968).
- 25 W. W. Cleland, *Biochemistry, 3, 480* (1964).